Ion Transport: Ion Channels

FACTORS DETERMINING TRANSPORT THROUGH ION CHANNELS
  • Selectivity
    • Structure
    • Size
    • Charge
  • Conductance
    • Rapid/ high: non-selective
    • Slow/ low: highly-selective
  • Gating
    • Voltage
  • Coordination of ion channel activity and cell function

ION CHANNELS IN EPITHELIAL CELLS
  • Epithelial cells
    • An interphase
    • Polarised
    • Apical (luminal)
    • Basolateral (interstitial)
    • Epithelial sodium channel
      • ENaC
      • Apical membrane
      • Absorptive epithelia
      • Alpha, beta, gamma subunits
      • Cytoplasm, cell membrane,  large extracellular loop, cytoplasm
      • Na conducting pore
      • Reabsorption of Na. Urine into interstitium. Down chemical gradient.  Na pump in basolateral membrane. 
      • Hormonal control
      • Aldosterone: Na retaining. Na reabsorption. K excretion. 
      • ANP: Natriuresis. Auppress ENaC. 
      • Liddle's syndrome
        • Rare
        • Autosomal dominant
        • Hypertension
        • Mutation beta gamma
        • Pull Na out of apical membrane to cytoplasm
        • Reducing ENaC activity
        • Stucked channel
        • Increases Na reabsorption
        • Na overload. Hypertension.  Suppression renin-aldosterone system.  Hypokalaemia.
      • Pseudohypoaldosteronism type 1
        • Opposite to Liddle
        • Didruption of pore-forming region
        • Loss ENaC activity.  Salt wasting. Potassium retention.
        • Hypotension. Activation renin-aldosterone. Hyperkalaemia.
      • Cystic fibrosis transmembrane conductance regulators
        • Large continuous protein
        • 2 repeating structures
        • Each cross membrane 6x
        • In epithelial cells . airways, duct of pancreas, sweat glands
        • Functions
          • Cl function
          • Regulators of other ion transporter. 
            • ENaC suppressed by CFTR
        • Cystic fibrosis
          • In the airway
            • CFTR mutations
            • Decreased Cl secretion
            • Increased absorption Na
            • Fluid thick & viscous, blocking bronchi, bronchioles. Bronchoectasis. Recurrent lung infections esp pseudomonas
            • Die prematurely from respiratory failure
          • In the pancreatic duct
            • Secretion Cl and HCO3, water
            • Failure of secretion
            • Viscous
            • Block ducts. Auto digestion. Pancreatic destruction.
            • CF features: pancreatic insuff, malab. weifgt loss, failure to thrive
            • Replace pancreatic enzymes, high calorie diet
            • Insulin deficiency. diabetes mellitus
          • In the sweat duct
            • Cl reabsorption in sweats
            • Unable to conserve Cl. High cl conc in sweat. Sweat test.
            • Vulnerable to dehydration. Not able to reduce Cl, Na, H2O lost in sweat


ION CHANNELS IN NON-EPITHELIAL CELLS
  • Muscle, nerve cells 
  • Ion channels regulate pass of ions
  • Transmembrane potential difference 
  • Signal between cells. Alter intracellular calcium
  • Cell membrane potential
    • Ohms's law 
    • Potential difference
      • Proportional to the current (number of ions moving across the membrane)
    • Ion movement depends on 
      • Type
      • Electrical and chemical gradient
    • Nernst potential
    • Resting cell potential
      • K channels
      • intracellular K 140, extracellular K 4
      • K moves out
      • Nernst potential for K 90mV
      • Potential different is electrically negative (inside negative with respect to outside)
    • Changes in membrane potential
      • Cell membrane potential: negative inside 
        • Hyperpolarisation
          • Inside becomes more negative
          • Cations efflux
          • Anion influx
        • Depolarisation
          • Inside more positive
          • Anions efflux
          • Cation influx
  • Voltage gated sodium channels
    • Alpha subunit
    • 1 or more beta subunits
    • Rapid changes in membrane potential
    • Action potentials
      • Resting
        • Voltage-gated Na closed
      • Depolarisation
        • Rapid channel opening
        • Na influx (Inside 140, outside 10)
      • Na influx depolarises 
      • Rapid inactivation of Na
        • Na/K-ATPase
        • Resting state restored by K channels
    • Na channels
      • Open
      • Inactivated
        • Cannot be reopen for a period of time
        • Allows excitable cells to hyperpolarise before next action potential starts
      • Closed
        • Hyperpolarisation is complete
    • Skeletal muscle cells
      • Voltage-gated Na 
        • Activation
          • Depolarisation
          • Increase intracellular Ca
          • Muscle contraction
        • Inactivation & closure
          • Hyperpolarisation
          • Fall in intracellular Ca
          • Muscle relaxation
        • Mutations of alpha subunit
          • No inactivation
          • Persistent inward Na
          • Hyperexcitability of skeletal muscle
            • Myotonia
              • Syndrome of impaired muscle relaxation
              • Difficulty opening the hand after clenching a fist or opening the eyes after shutting them tightly.
            • Paralysis
              • Action potential cannot be generated
              • Syndrome of hyperkalaemic periodic paralysis
                • Intermittent attack of muscle weaknesss
                • Spontaneously
                • Precipitated by exercise, stress, K rich food.
      • Cardiac mucle cells
        • Action potential
          • Opening NA channles
          • Na influx
          • Rapid depolarisation
          • Na quickly inactivated
          • Depolarisation maintained by Ca influx (plateau phase)
          • Hyperpolarisation by K efflux
        • Long QT syndrome
          • Mutations
          • Slow Na inactivation
          • persistent Na influx
          • Delay hyperpolarisation
          • Prolong action potential
          • Increase QT interval in ECG
        • Torsades de pointes
          • Sudden dysrhythmias in Long QT syndrome
          • Sudden death
          • Unknown mechanisms
          • Mutant Na channels 
          • Failed to inactivated 
          • Reipen during prolonged hyperpolarisation 
          • Early after depolarisations
          • Additional action potentials at multiple loci
      • Nerve cells 
        • Familial epilepsy
          • Mutation beta1 subunit
            • Rate of activation
            • Speed of recovery from inactivation
          • Neuronal hyperexcitability and seizures.
      • Drugs targeting voltage-gated Na channels
        • Membrane stabilisers in dysrhythmias and epilepsy
        • Restrict Na influx
        • Slow cell depolarisation
        • Limit cel responsiveness to excitation
        • Class 1 antiarrhythmics
          • Quinidine, disopyramide, lidocaine, flecainide
        • Antiepileptics 
          • Phenytoin and carbamazepine

    No comments:

    Post a Comment